
FLoS: Fix Localization System

(Supporting the Human Values of Universalism

Via the Localisation of Android Apps)

ICSE SCORE 2023

Summary Report

Abhijit Paul

Mohsin Ibna Amin

Shartaj Sajid Nahid

Shafiq-us Saleheen

Rupali Tasnim Samad

Hasnain Iqbal Shirsho

January 13, 2023

1

List of Contents

1 Introduction 4

2 Requirements Analysis 4

2.1 Overview of FLoS 4

2.1.1 Registration & Login 4

2.1.2 Project Handling 5

2.1.3 Test & Fix Localization 5

2.2 Assumption 6

2.3 Scope 6

2.4 Requirement Specification 6

2.4.1 Use Case Diagram 6

Level 0: FLoS System: Fix Localization System 6

Level 1: FLoS Modules 6

Level 1.1: Registration & Login 7

Level 1.2: Project Handling 7

Level 1.3: Localization Check & Fix 8

2.4.2 Activity Diagrams 8

2.4.3 Entity Relationship Diagram 10

2.4.4 Schema Tables 10

3 Architectural Design 12

3.1 Choices & Trade Offs 13

4 Management Plan 13

4.1 Team Member 13

4.2 Team Coordination 14

5 Source Code Management 14

6 Time Management 14

7 Implementation 15

7.1 Localization Issue Detection 15

7.2 Fix Localization Issues (Text & Audio) 15

7.3 Fix Localization Issues (GUI) 15

9 Verification & Validation Activities 18

10 Challenges & Lessons Learned 19

10.1 Challenges 19

10.2 Lessons Learned 19

2

11 Conclusion 20

References 20

List of figures

Figure 1: Use case diagram of Level 0 6

Figure 2: Use case diagram of Level 1 7

Figure 3: Use case diagram of Level 1.1 7

Figure 4: Use case diagram of Level 1.2 8

Figure 5: Use case diagram of Level 1.3 8

Figure 6: Activity Diagram of Registration & Login Module 9

Figure 7: Activity Diagram of Project Management 10

Figure 8: Activity diagram of Localisation Check & Fix 12

Figure 9: ER-Diagram of FLoS 13

Figure 10: 3-tier architecture of FLoS: Fix Localization System 14

Figure 11: MVC pattern of User Component 14

Figure 12: Pipe-filter pattern for issues & fixes 15

Figure 13: Time management chart for incremental process flow 16

Figure 14: Fix Localisation Issues(GUI) 17

Figure 15: Screenshot of sign-in page 17

Figure 16: Screenshot of register project page 18

Figure 17: Screenshot of the issues detection page after test run 18

3

1 Introduction

The seventh edition of the Student Contest on Software Engineering (SCORE) is part of the 45th

International Conference on Software Engineering (ICSE 2023) which aims to promote and encourage

software engineering in universities worldwide.

Our team consists of six undergraduate students from Institute of Information Technology, University of

Dhaka. We have selected “Supporting the Human Value of Universalism via Localization of Android Apps”

which is a project for detecting localization issues in the android applications and providing a fix. We

chose this project because it will allow apps to be adapted to different languages and make it accessible.

When an app is accessible, it reaches the widest possible audience and can be used by people with

diverse abilities such as visual or auditory impairments, as well as those who may have difficulty with

language or cultural barriers.

This report contains requirement analysis, architectural design, trade offs and choices, management

plan, source code management, time management, implementation and platform choices, verification

and validation activities, challenges faced and lessons learned.

2 Requirements Analysis

2.1 Overview of FLoS

The “Fix Localisation System” (FLoS) is a web application that automates the testing process for detecting

localization in a mobile application and provides fixes for the issues. It handles localization for both text

and media content (audio, video & image). It has three modules which are registration & login for

creating an account, project handling module for creating projects & controlling access to it and finally

test & fix localization module. The modules are described below:

2.1.1 Registration & Login

A user needs to sign up for creating an account and to do that, he needs to enter his username(unique),

email, password and additional information (e.g company name). To verify the email address, an OTP is

generated and sent to the mail. The user needs to enter that OTP to confirm his email address.

If the user forgets his password and wants to recover his account, an OTP is generated and sent to the

email address for that account. The user needs to enter that OTP to authenticate his identity and now, he

can create a new password for his account. Note that, the users can change their user information

anytime after logging in.

4

2.1.2 Project Handling

After logging in, the user can create a new project and become the project owner. He may search and

add other users in the project and the added users are called testers. The project owner can edit project

information and view results of all localization tests run. He can set the project to be private or

community. For community projects, the tester can see the test results of other testers associated with

the project. For private projects, they can only view their own results.

A user can also view the list of existing projects he has access to. After selecting a project, the user can

view the list of localization tests and their results for that project. The list includes the following

information - the apk file that was submitted for testing, time of when the test was conducted, number

of localization issues detected and fixed, fixed apk file and any additional comments.

2.1.3 Test & Fix Localization

The user can choose to run a new test for a project and for that, he uploads the apk file. Then the user

needs to select languages(e.g. French, English etc) for which he wishes to run the localization tests.

After selecting languages, the user confirms his submission and then, the system initiates testing of

localization that respects the value of universalism.

The system checks for localization in text and media content. It detects the language for text-content and

subtitles, voice speech & captions for media-content.

After that, the user can view the Localization Test Report. The localization test report includes - list of

localization issues & their content type (text or media content), status (whether issues are found or not),

line of code where the localization issue has occurred, link to the content (image, audio, video) with

localization issues and tester who has run the test.

After viewing the report, the user is asked to select the localization issues he wants to resolve from the

localization issues’ list. The system then tries to generate fixes for those localization issues in 3 steps:

1. Translation: System translates & saves the texts, subtitles and captions in a translation file. The

user may check the translation file and see whether the translation is correct or not. If he does

not like any translation, he may download, edit and upload the translation file.

2. Fixing Graphical User Interface(GUI): If translated text requires more space than the size of the

GUI element the text is in, then the GUI element is resized by the system in a manner that the

fixed GUI remains consistent with the original GUI.

3. Media Content Fix: System adds translated subtitles to video and audio in the selected language.

It also translates extracted texts from images as captions to fix that issue.

After patching the fixes in the source code, the system presents the results as a Localisation Fix Report.

The report includes - report version and type, issue status (total number of fixed localization issues &

5

unfixed localization issues), list of localization issues, their content type, line of code & whether they

were fixed or not, link to the original & fixed content so that the user may view them. Tester who has run

the test can download the fixed apk file or add comments once the fix generation is completed.

A notification is sent to the project owner after the localization fix report is generated. Note that the

report & fixed apk file are stored in the system as a log. After a year, the project owner will be asked

whether he wants to archive the log data or not.

2.2 Assumption

1. An APK file for the mobile application will be available.

2. System will generate the translation but ultimately, uploading the correct translation is the duty

of the tester.

3. API for all phases of coding will be available and the API query limit will not be exceeded.

2.3 Scope

1. We only cover text & media content based localization that respects the value of universalism.

2. When generating a fix, we only consider height, width & spacing.

2.4 Requirement Specification

2.4.1 Use Case Diagram

The following use cases show the list of events that take place between the users and the system to

accomplish the goal.

Level 0: FLoS System: Fix Localization System

Primary Actors: Tester, Project Owner, User

Secondary Actor: Email Service

Figure 1: Use case diagram of Level 0

Level 1: FLoS Modules

Primary Actors: User, Tester, Project Owner

Second Actors: Email Service

6

Figure 2: Use case diagram of Level 1

There are three modules in the application.

Level 1.1: Registration & Login
Primary Actors: User, Tester, Project Owner
Secondary Actors: Email Service

Figure 3: Use case diagram of Level 1.1

Action: New Users enter username, email id and password to create an account.

Reply: If the request is valid, the applicant will receive a confirmation email.

Action: Authenticated users enter email address and password to login.

Reply: He is allowed to enter into the system upon providing correct credentials.

Action: Authenticated users want to reset passwords.

Reply: System allows to reset the password through email.

Level 1.2: Project Handling

Primary Actors: Project Owner

Secondary Actors: Tester

7

Figure 4: Use case diagram of Level 1.2

Action: The user creates a project, adds other users to the project and can edit project information.

Reply: The newly added users get notification and become a tester.

Action: The user views the projects he is part of.

Reply: User sees project’s localization testing results he has access to.

Action: The project owner sets the archive time period.

Reply: Project owner is notified to archive the content when the time period is over.

Level 1.3: Localization Check & Fix

Primary Actors: User, Tester, Project Owner

Figure 5: Use case diagram of Level 1.3

Action: User starts localization test after uploading the apk file.

Reply: Localization test completes & the user selects the issues he wishes to resolve.

Action: User downloads the translation file for the selected localization issues.

Reply: User uploads the translation file after he edits the translations.

Action: User views the localization fix report after the localization issues are resolved.

Reply: User downloads the fixed apk file.

2.4.2 Activity Diagrams
Activity diagram represents the complete flow of a particular use case. Figure 6 represents the activity

diagram of level 1.1 Registration & Login Module.

8

Figure 6: Activity Diagram of Registration & Login Module

Figure 7 represents the activity diagram of level 1.2 Project Management.

Figure 7: Activity Diagram of Project Handling

9

Figure 8 represents the activity diagram of level 1.3 Localisation Check & Fix.

Figure 8: Activity diagram of Localisation Check & Fix

2.4.3 Entity Relationship Diagram
Figure 9 shows the entity relationship diagram of the Fix Localization System project.

Figure 9: ER-Diagram of FLoS

2.4.4 Schema Tables
We have derived the following table from the ER diagram (Figure 9):

10

Data Object Attribute Type Size

User -User_ID
-Username
-Email
-Password
-Project

Varchar
Varchar
Varchar
Varchar
Object

16
40
40
40

Project -Project_ID
-Project_Name
-Language
-APK
-Report

Varchar
Varchar
Varchar
Object
Object

16
40
40

Input APK -APK_ID
-Path

Varchar
Varchar

16
40

Fixed APK -APK_ID
-Path
-Version

Varchar
Varchar
Varchar

16
40
40

Issues -Issue_ID
-Title

Varchar
Varchar

16
40

Fixes -Fix_ID
-Description

Varchar
Varchar

16
40

Report -Report_ID
-Version
-Project
-Status
-Path

Varchar
Number
Varchar
Varchar
Varchar

16
(8,4)
40
40
40

Test Report -Issues Object

Fix Report -Fixes
-Comment

Object
Varchar 40

Has -Project_ID
-Issue_ID

Varchar
Varchar

16
16

Tests -Project_ID
-Tester_ID

Varchar
Varchar

16
16

Receives -APK_ID
-User_ID

Varchar
Varchar

16
16

Contains -Report_ID
-Fix_ID

Varchar
Varchar

16
16

11

3 Architectural Design

Our web application will follow 3-tier architecture - Presentation Layer, Logic Layer & Persistence Layer.

Figure 10: 3-tier architecture of FLoS: Fix Localization System

The presentation layer manages user interaction and communicates with the logic layer. The logic layer

consists of APIs to complete communication with the presentation layer. It also processes the input and

the bridge for the output to the client. The persistence layer stores and retrieves data from the system.

For FLoS, we constructed some system level structural organization, called architectural patterns. Here,

we used the Model-View-Controller (MVC) pattern as the primary pattern for front-end architecture. The

User Model is a representation of application data, meanwhile the view component is where the user

interaction takes place. The controller manages interactions between model and view.

Figure 11: MVC pattern of User Component

Other than that, we used the pipe-filter pattern in the back-end. Localization processes will be broken

down into multiple steps to find defects and then fixes for every defect, meaning a different outcome

every time. For that purpose, we integrated the pipe-filter architectural pattern in our solution design.

There are different filters which consume and transform data. Pipes are the connectors to pass it to

another channel. Here, we used scanner, parser, marker etc. as filters to transform data streams and

generate outputs.

12

Figure 12: Pipe-filter pattern for issues & fixes

3.1 Choices & Trade Offs

● Handling localization issues: Handling localization issues in text while keeping the GUI consistent

is a very time consuming task because we have to compare the generated fixed GUI with the

original GUI again & again for fixing issues. So we choose to let the user select the localization

issues he wishes to resolve. It decreases the solution space so we can better converge to

solutions with less time.

● Managing translations: It is very difficult to provide proper localized translation due to local

dialects. So we generate a default translation file that the user may edit to accommodate better

translation. Our tool no longer remains totally automated but it does lead to a better solution.

4 Management Plan

4.1 Team Member

Serial No Member Name Role & Responsibility Area of Expertise

1. Shafiq-us Saleheen Project Coordinator - Project
Coordination & quality assurance

Project Management
Software testing

2. Hasnain Iqbal Shirsho Back End Developer - Developing
back-end & system integration

Machine Learning
Back-End Development

3. Moshin Ibna Amin Designer - Identifying architectural
patterns & component analysis

Android Development
Software Architecture

4. Shartaz Sajid Nahid Front End Developer -
Designing UI & implementation

Software Architecture
Front-End development

5. Abhijit Paul Researcher - Researching about the
topic & deriving the solution

Research activity
Requirement Analysis

6. Rupali Tasnim Samad Requirement Analyst -
Documentation & schema design

Software Requirement Analysis
System Design

13

4.2 Team Coordination

For team management, we followed an incremental process model. We chose it because requirements

were reasonably well-defined for our system. Additionally, there was a compelling need to provide a

limited set of software functionality quickly and then refine and expand on that functionality in later

software releases. The roles and responsibilities are chosen according to the expertise of the member. In

each increment for communication we all had meetings in Google Meet. For planning and modeling,

Moshin, Rupali & Abhijit did the requirement analysis, designing the solution and documentation. For

the construction part, Hasnain & Shartaj did the backend and front end coding. Our project coordinator

Shafiq did the testing and quality assurance and coordinated in every step. For working together on

documents, we used Google Docs. We have used Google Drive for assembling all our work documents.

To make diagrams, we used Draw.io. We used Trello for task management.

5 Source Code Management

To work collaboratively, we used Git and our project is hosted at GitHub1. Each of us published our code

to the remote GitHub repository to keep everyone updated.

6 Time Management

Here is a timeline of how we completed the whole project using incremental process flow -

Figure 13: Time management chart for incremental process flow model

1 https://github.com/saleheenshafiq9/FLoS-FixLocalizationSystem

14

https://github.com/saleheenshafiq9/FLoS-FixLocalizationSystem

7 Implementation

For our tool, we are going to use the following frameworks and technologies - React JS as front-end

framework, Django as back-end framework and PostgreSQL as database, MinIO as object storage.

Our implementation consists of two segments - Detection & Fix. To fix localization issues, we had to

generate text-based translation and handle GUI issues.

7.1 Localization Issue Detection

To detect localization issues in an android apk, we analyzed apk files and extracted xml files. So -

1. Insert APK - The user uploads apk as our input. The apk is stored in the object database. The user also

selects the languages in which he wants to localize the app.

2. Construct AST - We then generate AST(Abstract Syntax Tree) from source code to navigate & extract

information from code. We used ‘py_ast’ , a python library to extract the AST from source code. We

looked for image, audio or video references for the presence of any media contents. Here -

I. For image contents, we used the Tesseract OCR library available in python to detect and extract

texts from images.

II. As for audio files, we used the required libraries such as SpeechRecognition and pydub.

III. For video subtitles, we used the pycaption library to parse subtitles.

3. Identify Markers - We traverse the AST and look for hard-coded specific patterns (string literals,

constant variables, comment markers etc.) that indicates whether a string is being used for localization.

4. Detect Language - Now, we use the strings from identified markers and apply the langdetect library in

Python to detect the language of the strings.

5. List Localization Issues - For the selected language, if the detected language of the text is of different

language, then it is identified as a localization issue.

7.2 Fix Localization Issues (Text & Audio)

To localize the app, we created additional strings.xml files for the language and region that the user has

selected. The texts will be translated using - MyMemory API (because it’s free) and presented to the user

as a translation file. We will translate identified captions, speech and subtitles into the desired language.

For audio files, we will use a text-to-speech library, called pyttsx3 to generate new audios. If the user

does not like a translation, he will be able to edit and add his own translation in the translation file.

7.3 Fix Localization Issues (GUI)

After translation, the length of texts may become bigger that may not fit in the previous GUI element. So

we need to increase or decrease the properties of the elements. We will do so in the following manner

to keep the GUI consistent.

15

1. Build Visual Hierarchy Graph - This stage converts the XML file of apk source code into a hierarchy

graph. Here, nodes are all the elements (button, text area etc) of the activity (the window in which the

app draws its UI.) having an element id.

2. Cluster Elements - Each node from the Visual Hierarchy Graph is clustered using their XPath, size &

class properties. We use the DB-SCAN[2] clustering algorithm because this particular technique is well

suited for our problem since the algorithm does not require predefining the number of clusters, and

produces mutually exclusive clusters (i.e., hard clustering). Elements in the same cluster are visually

related.

3. Build Size Relationship Graph - To keep the GUI consistent, we need to propagate the change of one

element to another visually related element. For that, we construct the size relationship graph. Here,

nodes are connected using a consistent edge if they are in the same cluster. Nodes are connected using a

dependency edge if their property (height, width, spacing) includes keywords like “Fit Width”. The

weight of the nodes are the ratio of height and width of the independent element.

4. Identify Problematic Elements - Elements with localization Issues are identified in the size relationship

graph by comparing the required size of the translated text. If the required size is significantly greater or

smaller than element size, then it needs to be resized and is identified as a problematic element.

5. Generate Subgraph - We generate a subgraph that is a transitive closure of the problematic elements.

6. Convert Subgraph Information into Genes - We used a genome sequencing algorithm because it can

work efficiently in a large solution space. To run a genome sequencing algorithm, we need to convert the

nodes of the subgraph into genes. Each node contains element ID, properties (height, width, spacing) &

values and is used to construct a gene. Value (how much the property should increase or decrease) is

initialized by genome sequencing algorithm and optimized after each iteration.

Figure 14: Fix Localisation Issues(GUI)

8. Propagate Change - After genome sequencing algorithm execution is completed, the values of each

gene are reflected in the Size Relationship Graph by increasing or decreasing the property. Then this

change is propagated following the edges.

9. Generate XML - XML file is generated from the Size Relationship Graph by converting it into Visual

Hierarchy Graph and then, Visual Hierarchy Graph is converted into an XML file. This is the GUI fix for the

apk file.

16

8 User Interface

Figure 15: Screenshot of the sign-in page

Figure 16: Screenshot of register project page

17

Figure 17: Screenshot of the issues detection page after test run

9 Verification & Validation Activities

Verification checks whether we are building the product right where validation checks whether we are

building the right product. We planned these by considering the schedule and complexity of the system.

1. The documents related to requirements, design, test cases were thoroughly reviewed to find

inconsistencies, logical errors, incompleteness and any other faulty detail.

2. We have planned to go through - unit, integration & system testing. For white-box testing, we

carefully investigated the input to lead them to independent paths to view their control flow for

rigorous testing. We used unittest for python to generate unit test cases. We will use Selenium

IDE to do integration testing.

3. We wrote test cases after exploratory testing. We followed standard format to write test cases,

by including test id, module, steps to reproduce, input, expected and actual results, status etc.

4. We did black-box testing by analyzing boundary values and robustness of inputs and outputs. We

used Selenium IDE for this.

5. We used a static analyzer called PyLint here. It is used for white-box testing to check syntax,

variables, code structure etc.

6. We used Postman to do API testing and inspected response headers to find defects.

7. To validate load, response time and analyze results, we will use Apache Jmeter as well.

8. We used Burp Suite for security testing. It is a comprehensive platform for web application

security testing.

9. We have further testing to do on usability issues, integration etc. and some regression testing is

required after completion of all modules.

18

10 Challenges & Lessons Learned

10.1 Challenges

The project was full of challenges. Some of the challenges were -

● Defining the scope of the project was difficult because Schwartz model [3] includes many human

values of Universalism (e.g. accessibility, equality, world of beauty, social justice etc) and working

with all of it was not possible within the time limit. We talked to the sponsors and it helped us to

understand that our scope for the project is localization of language to ensure accessibility.

● Next challenge was finding a way to fix localization issues while keeping the GUI consistent. We

found an approach [2] for it that clusters GUI elements to find the visually related elements and

change them together to keep the GUI consistent.

● Producing translations of high quality was difficult to achieve, especially for idiomatic

expressions and cultural references. So we allowed the user to edit the system generated

translation file to accommodate the localized translation using jargons, dialects etc.

10.2 Lessons Learned

Throughout the project we have come to learn many things and some of the lessons we learned are -

● Software development best practices: We followed software development best practices such

as testing, documentation from the beginning to the end for the very first time. We went

through every phase of SDLC and learnt how it’s like to develop following standard approaches.

● Technical Skills: By generating an AST of the app's source code, we learnt how to use libraries

and tools to parse and analyze code, and how to navigate and manipulate the AST to detect

issues in the code. We learnt how to use translation APIs (Mymemory api) to translate string

resources in different languages & how to handle apk files, extract them, and repack them after

making the necessary changes.

● Software Testing Tools: We learnt testing methods such as unit testing, integration testing, and

performance testing. We learnt to use Apache Jmeter, Selenium, Burp suite, postman etc.

● Research Knowledge: We were inexperienced regarding literature reviews. But for gaining

domain knowledge & finding a solution for GUI consistency issues we had to go through many

research papers which will help us a lot in future.

● Human Values: We understood how vital it is to respect human values when developing

softwares because it ensures that the software is designed and implemented in a way that is

ethical, fair, and respects the rights and dignity of users.

19

11 Conclusion

We are very happy working with this project which is a new learning experience for us. At our core, we

realized that we are the builders of the digital world and we have the opportunity to make it a beautiful

place that respects human values, eliminates discrimination and gives everybody an equal opportunity

(e.g. through accessibility). This philosophy will greatly aid us in our future works, in life.

Before we started writing the code we thoroughly went through the design phases. Our design phases

are reflected in the requirements design and architecture design.

Before we started writing code we thoroughly went through the design phases. Our design phases are

reflected in the requirements design and architecture design. There is still much room for expansion of

this project -

● We will work on classification localization based on their severity.

● Creating detection tools and fix for other values of universalism such as - equality, accessibility,

social justice, world of beauty etc.

● We will handle more corner cases for keeping the GUI constant. Such as handling padding &

margin.

● We will cover the cases of dialects and regional variations while translation.

● We will fix Right-to-Left issues for translated languages (Arabic, Hibrew etc.) which will allow us

to work with these languages more effectively.

● Our application will be able to test websites and provide localization fixes.

● We have rigorously studied discrimination as a core issue when trying to establish human values

of universalism. We will work on detecting discrimination in a system.

We would like to thank Humphrey Obei and Professor Xiaoning DU for helping us from time to time by

answering our queries.

References

[1] Ali S Alotaibi, Paul T Chiou, and William GJ Halfond. 2021. “Automated Repair of Size-Based

Inaccessibility Issues in Mobile Applications.” In the proceedings the 36th International Conference on

Automated Software Engineering (ASE). IEEE, pp. 730–742.

[2] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. “A density-based algorithm for

discovering clusters in large spatial databases with noise.” In KDD, Vol. 96. pp. 226–231.

[3] Shalom H Schwartz. 2012. “An overview of the Schwartz theory of basic values.” Online readings in

Psychology and Culture 2, 1, pp. 2307–0919.

20

